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Experiments are described which demonstrate higher-order Bragg resonant 
interactions between linear gravity waves and doubly sinusoidal beds. These higher- 
order effects, which include harmonic and subharmonic Bragg reflections, have been 
observed by making very precise measurements in a wave tank. Subharmonic 
reflection was found to be very large, even for small bottom undulation amplitudes. 
The experimental data are compared with the predictions of a numerical model based 
on the full potential theory of linear waves. 

1. Introduction 
In recent years, the interaction of surface gravity waves with a periodic bottom 

has been studied extensively, both experimentally and theoretically. For waves 
which are normally incident on a region of long-crested sinusoidal undulations, the 
result of principal interest has been the resonant reflection of the incident waves 
when the surface wave wavenumber (k) is half the bed wavenumber (K) ,  that is, 
K = 2k.  This wave reflection, which is due to the multiple interferences of the waves 
from the periodic scattering centres, has been well known in solid-state physics as 
Bragg reflection for about sixty years. It corresponds to the first forbidden band 
found by Brillouin in the quantum theory of solids : the energy in the forbidden range 
is totally reflected by a regular lattice (see for example, Kittel 1976). 

In  the rather different context of oceanography, an important application of the 
Bragg effect relates to the patches of sand bars which are commonly formed off 
beaches, outside the breaker zone, with wavelength of the order of 100 m. Such bars 
are capable of partially reflecting incident waves having the appropriate wavelength, 
thereby, protecting the beach-face from the full impact of the waves (see for example, 
Bailard et ul. 1990; Bailard, DeVries & Kirby 1992). Moreover, on a fully erodible 
sand bed, a ' coupling ' may arise between the reflection of incident wave energy and 
the growth of new sand bars (see for example, Carter, Liu & Mei 1973; Short 1975; 
Heathershaw & Davies 1985; Benjamin, Boczar-Karakiewicz & Pritchard 1987 ; 
O'Hare & Davies 1990). 

The case of linear surface waves incident upon a horizontally one-dimensional 
sinusoidal bottom of finite extent was examined by Davies (1982~)  and Davies & 
Heathershaw (1984). The method of regular perturbation expansions was used to 
solve the linear potential equations of waves in which the ratio E of the bottom 
amplitude AH to the mean water depth H,, was taken as a small parameter. The 
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reflection coefficient R (defined as the quotient of the reflected and incident wave 
amplitudes) displays a resonant Bragg peak centred around 2klK = 1. In addition, 
the reflection coefficient oscillates in the ratio of total length L of the sinusoidal bed 
to the surface wavelength. This latter effect was demonstrated for rectangular 
obstacles by Mei & Black (1969). 

At resonance (2k/K = l ) ,  as the number M of ripples in the patch becomes larger, 
the reflection coefficient of Davies & Heathershaw (1984) becomes unbounded, and 
the perturbation theory breaks down (the case of an infinite sinusoidal bottom was 
also studied by Davies 19823 and Mitra & Greenberg 1984). In order to overcome this 
difficulty, Mei (1985) developed a theory appropriate for large reflection which allows 
the reflected wave to be of the same order as the incident wave. By using a multiple- 
scales approach, Mei found two equations, uniformly valid in space and time which 
couple the incident and reflected wave envelopes through the amplitude of the 
bottom undulations (Klein-Gordon equations). Thus, he obtained a uniformly valid 
expression for the reflection coefficient in the vicinity of the resonance at 2klK = 1. 

Davies’ results for small R and & and Mei’s results a t  (or close to) resonance, are 
in good agreement with the experimental data of Heathershaw (1982) and Davies & 
Heathershaw (1984) obtained for E < 0.30 and spatial period number, M = 2, 4 and 
10. Further comparisons with these data have been made by Dalrymple & Kirby 
(1986) and Kirby (1986). For both resonant and non-resonant cases, Dalrymple & 
Kirby (1986) used a boundary-integral-equation method to compute numerically the 
reflection coefficient. Kirby ( 1986) derived a modified mild-slope equation, found the 
two coupled equations of Mei (1985) at resonance for a sinusoidal bottom and, by 
numerical computation, obtained the reflection coefficient. Further comparisons 
with similar laboratory experiments were reported by Hara & Mei (1987) and 
Benjamin et al. (1987). 

The present study concerns the higher-order Bragg effects coming from the large 
amplitude, or large slope, of bottom undulations and was motivated by some 
preliminary experiments on a sinusoidal bottom with a spatial period number, 
M = 22 (Guazzelli 1986). For E = 0.57, the plot of the reflection coefficient versus the 
wave frequency showed both the main Rragg resonant peak in the vicinity of K = 
2k and a new second smaller resonant peak in the vicinity of K = k. In addition, the 
former Bragg peak was shifted towards lower frequencies compared with the 
prediction of the lowest-order theories of Davies (1982 a )  and Mei (1985). 

Some explanation of these new higher-order effects can be obtained by considering 
the simplest available formalism of the linear shallow-water theory. The propagation 
of long surface waves over a sinusoidal bottom of infinite extent was first discussed 
by Rhines (1970). Following a similar procedure, the case of a bed of finite extent was 
examined for the general non-resonant case and for exact resonance by Davies, 
Guazzelli & Belzons (1989). Under the assumption that the relative bed amplitude 
and bed steepness are small parameters, the shallow-water equation can be 
transposed into a Mathieu’s equation. The forbidden bands, corresponding to strong 
reflection of the incident waves by the bottom undulations, appear at  2k/K = 1,2, 
3,4, . . . (see the Mathieu stability diagram in Abramowitz & Stegun 1965, Chap. 20). 
In an analysis to lowest order in E ,  which is consistent with the approximations made 
in deriving the Mathieu equation, only the first-order Bragg resonance is revealed. 
Since the widths of the forbidden bands are of order E ,  e2, e3, . . . , the respective higher- 
order Bragg resonances are revealed successively by an analysis to higher orders in 
E .  As E increases, the widths of the forbidden bands grow, and their centres are 
displaced from the integral values of 2k/K above. This gives a qualitative explanation 
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for the occurrence of the second-order Bragg resonance aroundK = k, and for the shift 
of the resonant peaks to lower frequencies than those predicted by linear theory 
when E is increased. The underlying physical explanation for these effects involves 
the multiple interference process between the incoming waves and the waves which 
are partially reflected by each ripple. This is revealed in the long-wave model through 
the instabilities of the solutions of Mathieu’s equation. The results of Davies et al. 
(1989) were extended to intermediate-depth dispersive waves by Kirby (1989). 

In the case of a bed consisting of the superimposition of two sinusoids having 
different wavenumbers K,  and K, and same bed relative amplitudes AH/H, = E = 
E ,  = E,, the shallow-water equation can be transformed by the procedure outlined 
above into an almost-periodic Mathieu equation. In  an analysis to the first order 
in E ,  only the first Bragg resonances corresponding to each sinusoid, i.e. k = I&, and isz, are revealed. For larger E ,  the higher-order Bragg resonances are revealed 
successively. In an analysis to second order, the second-order bands indicate wave 
reflection for k = K,, K,, i (K,  +K,)  and B(K, -Kl). The resonances associated with 
k = i(K,-K,), which occur at  low frequency, are called subharmonic Bragg 
resonances. Those associated with k = K,, K ,  and i(Kz +K,), which occur at  large 
frequency, are called harmonic Bragg resonances. The centres of the bands are again 
slightly shifted toward lower frequencies than predicted by the values of 2k/K above, 
when E is increased. More generally, such higher-order resonances may be found in 
every propagation problem governed by an almost-periodic Mathieu equation. An 
example is the case of an electromagnetic wave propagating through a medium with 
an almost periodic permittivity (see, for example, Jaggard & Jordan 1984). 

For a sinusoidal bed, the lowest-order analytic theories of Davies (1982a, b)  and 
Mei (1985) as well as the mild-slope equation approach of Kirby (1986) cannot 
account for the presence of these new higher-order effects as higher-order Bragg 
resonances nor the shift toward lower frequencies. For the superimposition of two 
sinusoids, it is possible, as a first-order approximation, to add the separate 
contributions given by the first-order theories for each sinusoidal component of the 
bed (Kirby 1986 ; Kirby & Anton 1990). However, higher-order effects coming from 
large bed amplitude cannot again be predicted by these lowest-order theories (Kirby 
& Anton 1990). Along these lines, it should be noted that C. C. Mei (1988, personal 
communication) has derived a second-order theory for the resonant reflection by a 
rippled bed containing two wavenumbers (K,  and K,) .  This theory, which represents 
an extension of Mei’s (1985) approach, reveals the second-order bands (k = K1,K2,  
i (K,  +K,) and i (K,  -Kl) when the calculation is performed in the vicinity of these 
bands. 

It is possible to describe these higher-order phenomena by using a non-perturbative 
numerical approach. Indeed, the boundary-integral-equation method used by 
Dalrymple & Kirby (1986) remains valid for large bed amplitude. They noticed that 
for a sinusoidal bed with E = 0.30, their computed Bragg peak was slightly shifted 
towards low frequencies, compared with the peak obtained on the basis of lowest- 
order perturbation theories. 

In the present work, we chose to compare experimental data to predictions of a 
numerical model based on the linear wave potential theory which describes the wave 
propagation over a doubly sinusoidal bed (see also, Belzons, Rey & Guazzelli 1991). 
This model was first proposed by Takano (1960) and was then improved by Kirby & 
Dalrymple (1983). It describes wave propagation over a series of steps and can be 
applied to any smooth topography by discretization of the bottom into narrow 
shelves. The problem of the resonant reflections of waves by sinusoidal and doubly 
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sinusoidal beds was addressed by Mattioli (1990, 1991) by means of the same 
numerical model. Mattioli (1990,1991) investigated the role of the evanescent modes, 
which are created a t  each step discontinuity, in the resonant reflection phenomenon. 
For the case of doubly sinusoidal beds, Mattioli (1991) demonstrated the existence 
of the first-order Bragg resonant reflections as well as the second-order Bragg 
resonant reflections. Applications of this model to different bottom topographies, 
such as rectangular obstacles, sloping and sinusoidal or doubly sinusoidal beds, 
including a complete justification of the convergence of the results are obtained in 
Rey (1991, 1992). A comparison between the prediction of this model and 
experimental data for waves propagating over a single bar can be found in Rey, 
Belzons & Guazzelli (1992). 

We should also mention a model developed by Devillard, Dunlop &, Souillard 
(1988) for wave propagation over a series of steps using the renormalized transfer 
matrix introduced by Miles (1967). A comparison between this model and the 
numerical model of Takano (1960) and Kirby & Dalrymple (1983) for the case of 
waves propagating over a single submerged rounded bar can be found in Rey et ad. 
(1992). This model has been also used by O’Hare & Davies (1991) for the case of 
waves propagating over small-amplitude sinusoidal bottoms. Since this model is, in 
fact, a variational improvement upon the plane wave approximation, the use of this 
method for the prediction of the wave field over a series of steps is strictly valid only 
if the non-propagating modes, which are created at each step discontinuity, are 
negligible when they reach the preceding or following steps. As a result, this method 
does not predict accurately the higher-order phenomena for a finitely discretized 
doubly sinusoidal bed. 

Since any periodic bed can be represented by its Fourier components, the present 
problem is also related to the study of resonant reflection between gravity waves and 
periodic beds consisting of a series of bars. In this case, not only the first Bragg 
resonance, around 2k/K = 1,  but also the second resonance, around k/K = 1, were 
experimentally demonstrated by Belzons, Guazzelli & Parodi (1988), for a periodic 
bed consisting of a series of 29 rectangular bars of relative height 0.43. Comparisons 
of these data with the numerical method of Takano (1960) and Kirby & Dalrymple 
(1983) as well as with the numerical method of Devillard et al. (1988), derived from 
Miles (1967), were presented by Rey (1991, 1992). Both methods gave similar 
predictions in good agreement with the experimental data of Belzons et al. (1988), 
particularly in respect to the position and width of the two resonant peaks. The 
formation of the second resonance peak was numerically confirmed and examined by 
Mattioli (1990, 1991). Experiments by Kirby & Anton (1990) with a periodic bed 
consisting of a series of four bars of relative height 0.33 also showed the first and 
second Bragg resonant reflections. The experimental data were shifted to lower 
frequencies compared with the prediction of the lowest-order theories. 

In this paper, we present an experimental study of linear gravity surface waves 
propagating over a bed consisting of the superimposition of two sinusoids having 
different wavenumbers K ,  and K ,  > K ,  and the same bed relative amplitude 
E = AH/H,,. Our objective in this work is to examine the effects arising from the large 
amplitude, or large slope, of bottom undulations. To this end, a systematic 
experimental study of the interactions between linear gravity surface waves and 
doubly sinusoidal beds was undertaken by gradually increasing the bed relative 
amplitude e. We expect to observe a reflection of the incoming wave when its 
wavenumber k satisfies the first-order Bragg conditions corresponding to each 
sinusoid, i.e. k = I$ and I$,, but also the second-order Bragg conditions 
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corresponding to k = K,,K, ,  &K,+K,)  and $(Kz-Kl) .  Additional aspects of this 
work related to subharmonic resonant reflection may be found in Belzons et al. 
(1991). 

The paper is organized as follows. The theoretical model is outlined in $2 and the 
experimental techniques in $3. In $4, the experimental results are presented and 
compared with the numerical calculations, as well as with the predictions of the first- 
order theory by using the additivity of the separate contributions for each sinusoidal 
component of the bed. Finally, in $5, the results are discussed and brief conclusions 
are drawn. 

2. Theoretical model 
The model is briefly presented in this section and further details can be found in 

the original papers of Takano (1960) and Kirby & Dalrymple (1983) as well as in 
Mattioli (1990, 1991), Belzons et al. (1991), Rey (1991, 1992) and Rey et al. (1992). 

2.1. Mathematical model and numerical method 
The formulation is based on the full potential theory of linear monochromatic waves 
propagating in one horizontal direction. The flow is assumed to be irrotational. The 
departure of the water surface from its mean level (y = 0) is taken as q(x, t )  ( t  is time, 
x the horizontal axis), and the fixed impermeable bed is defined by y = H ( x ) .  The 
(complex) velocity potential is assumed to have time dependence 

(f = w/2n is the frequency). The motion is governed by Laplace’s equation with a 
linearized free-surface condition and a bed condition expressing the vanishing of the 
normal component of the fluid velocity. 

The smooth bottom is discretized into a series of N narrow shelves, and the 
problem reformulated as the propagation of waves over a succession of domains of 
constant depth separated by small steps. In  any domain m of constant depth H,, the 
complete solution of Laplace’s equation and boundary conditions can be written in 
the form 

@(x, Y ,  t )  = eiwt $@, Y ) ,  

m 
$,(x, y) = A$ efikrn(z-zrn) 2,  + B;, e*km.n(z-zm) ~ m .  n ,  ( 1 )  

n=l 

where the ik, are solutions of the dispersion relation k, tanh (k, H,)  = d g - l ,  
K,, It (n = 1,2, . . . , 0 0 )  are solutions of the dispersion relation 

and $,, n ( ~ , ,  y )  = cos (K,, n(Hm - y ) ) .  Two propagating wave modes are described by 
the terms with coefficients A&, and infinitely many non-propagating modes at x = 
x, are described by the terms with coefficients B&+, n = 1,2, ..., 00. The functions 
2, and $ m , n  form a complete orthogonal set for each region m. 

The matching conditions ensuring continuity of both fluid velocity and surface 
elevation between successive steps can be written. Each matching condition can then 
be multiplied in turn by all members of the complete orthogonal set { x , , $ , , ~ ;  
n = 1,2, ..., 00} and each resulting equation integrated over the appropriate depth. 
Infinitely many equations must be considered because of the infinite number of 
evanescent modes. Therefore, at each step, not only do the two propagating solutions 
become coupled, but the evanescent modes also become coupled with the propagating 
ones and among themselves. As a result, the situation is not that of the propagation 
of a simple plane wave but that of the propagation of an infinite number of coupled 

Km,ntan(K,,nH,) x, (Y)  = cosh(k,(H,-~)) 
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channels. It is, then, the entire set of propagative and non-propagative mode which 
determines, by means of successive small contributions, the total effect on the 
incident propagating wave. 

In order to solve the problem numerically, the non-propagating modes must be 
truncated a t  some order n = P. For a bottom consisting of N steps, a direct numerical 
method requires the simultaneous resolution of uV(P + 1 )  equations for the 
determination of the uV(P+ 1) unknown complex coefficients A& and B&, n. We used 
an additional approximation, consisting of a subdivision of the whole bottom into S 
smaller subsystems or patches to which the numerical method could be more easily 
applied. 

Each patch has an influence on the wave, which depends on its direction of 
propagation. The above direct method allows the calculation of the response in terms 
of reflection and transmission for an incident wave of arbitrary amplitude 
(propagating towards x > 0) and for a retrograde wave of arbitrary amplitude 
(propagating towards x < 0) encountering the patch. Owing to the linearity of the 
model, we can define and characterize in the same way an equivalent patch composed 
of two successive patches. For a bed subdivided into S patches, we can proceed by 
successive iterations. For the bottoms used in the experiments (see $$3 and 4), each 
bed period was taken as a patch and was discretized into 61 steps of equal length. In 
order to ensure that the resolution involved no numerical problems, we also checked 
that the energy conservation was satisfied within an accuracy of The major 
benefits of the patch method are a significant reduction of calculation time as well as 
the ability to solve very large, finely discretized systems. This method is particularly 
efficient in the present case because it takes advantage of the periodicity of the bed. 

2.2. Limitations of the numerical model 
There are certain physical limitations of the computations performed in this work 
which arise from approximations of the potential theory of pure linear gravity waves 
as well as approximations of the numerical method. 

The limitations of the former kind may be stated as a set of simple conditions on 
the various lengthscales in the problem (see, for example, Whitham 1974) : 

Ak,  AH;', Ak-2H-3 0 1, (2) 
where A is the surface wave amplitude, k is the wavenumber and H ,  is the mean 
water depth. Moreover, we must verify that the effect of surface tension can be 
neglected. Another physical limitation is that viscous dissipation is ignored in the 
model. 

An additional limitation of the numerical model comes from the truncation of the 
evanescent modes. It was numerically verified that in the range of frequencies and 
depth discontinuities experimentally investigated here, the results for the wave field 
rapidly converge as the number P of evanescent modes is increased. The model was 
tested using P = 0, 1,  2, 3 and 4 evanescent modes to get a quantitative idea of the 
rate of convergence of the computation. These tests showed that the results for the 
reflection coefficient presented below were convergent to within 2% using 3 
evanescent modes. Additional justification of the convergence of the results including 
other bed topographies can be found in Rey (1991, 1992). 

Finally, the last numerical limitation comes from subdividing the bed into patches. 
This approximation is justified if the range of the evanescent modes emitted at  the 
nearest discontinuities on both sides of the separating point is small relative to the 
distance between these two steps. This range can be evaluated numerically for each 
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patch independently by calculating the relative contribution of the evanescent terms 
emitted from each of the two nearest steps. Indeed, one would expect the patch 
subdivision approximation to be most efficient when the one-period patches are 
bounded a t  a crest or trough of the bottom. But, in order to deal with a single patch 
in our computation, the one-period patches are bounded a t  a maximum slope 
location since the bed also starts and ends at  a maximum slope point. We have 
verified that this choice remains correct, as shown on figure 7 where the calculations 
using a patch subdivision either at the troughs or at the maximum slopes give very 
similar results. For the maximum slope bed subdivision, we also checked numerically 
that the relative contribution of the evanescent modes, at patch boundaries, was of 
the order of 5 YO. 

3. Experimental techniques 
3.1. The. wave tank and the periodic bottoms 

The experiments were carried out in a glass-walled wave tank, of length = 4.70 m 
and width = 0.39 m. The bottom of the tank was levelled so that its deviation from 
a horizontal plane was within 1 mm, and the width of the channel was uniform to 
within 1 mm. The average water depth H ,  was varied between 2.5 and 4 cm. Water 
depths were determined to within an estimated 0.2 mm. Beds composed of periodic 
corrugations were built into a false flat bottom, extending in the up- and down-wave 
directions with the mean water depth H,. These beds were such that the depth varied 
only in the x-direction along the wave tank so that, apart from weak edge effects, the 
motion of the wave was horizontally one-dimensional. The beds consisted of the 
superimposition of two sinusoids having different wavenumbers, K ,  and K,, such 
that H ( x )  = H ,  - AH, sin (K, x) -AH, sin (K,  x). Three different bottom types were 
used in the experiments. The first bottom, S,, had amplitudes AH = AH, = AH, = 
1 cm and wavenumbers K ,  = 0.52 cm-l and K ,  = 1.05 cm-' (i.e. wavelengths A,  = 
12 cm and A ,  = 6 cm). Two lengths of this bed were studied, having L = 48 cm and 
192 cm. The second bottom, S,, had amplitudes AH = AH, = AH, = 0.5 cm and 
wavenumbers Kl = 1.05 cm-l and K ,  = 1.57 cm-l (i.e. wavelengths A,  = 6 cm and 
A,  = 4 cm). The length of this bed was L = 48 om. The last bottom S, had the same 
wavenumbers as S,, K ,  = 1.05 cm-l and K ,  = 1.57 cm-' but different amplitudes 
AH = AH, = AH, = 1 cm. The length of this bed was L = 48 cm. 

For a distance of 1,lO m up-wave of each of these ripple patches, and between their 
down-wave ends and the beach, the bed was flat and the water depth constant (H,) .  
Diminishing the mean water depth increases the relative amplitude of the bottom 
undulations, characterized by E = AH/H,.  In the following experiments with beds S, 
and S,, the values studied were E = AH/Ho = 0.25, 0.33, 0.40 (corresponding to the 
mean depths H ,  = 4, 3 and 2.5 cm). In the experiments with bed S,, the values 
studied were E = A H / H ,  = 0.13, 0.17, 0.20 (corresponding to the mean depths 
H ,  = 4, 3 and 2.5 cm). 

At  one end of the wave tank, a piston-type wave generator created a 
monochromatic sinusoidal wave of amplitude smaller than 1 mm, resulting in an 
(incident) wave field which is expressed by vi(x, t )  = A,@) cos ( k x - o t ) .  The vertical 
paddle of the wave generator was driven by a microstepping motor which was 
monitored by a microcomputer. The paddle mechanical system ensured a perfect 
sinusoidal motion of the paddle. This paddle was used to generate wave frequencies 
f (= w/27c) in the range 0.7 to 6 Hz. The frequency was determined to an accuracy 
better than 0.0001 Hz. 
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At the other end of the tank, a 12"-slope rubberized-fibre wave absorbing beach, 
and a reservoir filled with the same absorbing material, were built to prevent waves 
from being back-reflected onto the variable bottom. The length of the beach was 
L, = 70 cm, the volume of the reservoir was V, = 100 1. Measurements of the back- 
reflection by the beach are discussed in the following section. 

3.2. Wave measurements 
Measurements of the wave elevation r(x,t) were made with an absolute accuracy 
better than 40 pm using an optical detection technique. The optical devices were 
mounted on a carriage which could slide along the top of the tank on two rails. The 
motion of the carriage was controlled through the microcomputer by a stepping 
motor, which ensured reproducibility of the measuring positions. The smallest 
available displacement corresponding to one step was 0.0456 mm. 

For any given wave frequency, the reflection coefficient R (defined as the quotient 
of the reflected and incident wave amplitudes) was obtained from measurements of 
the partially standing wave field between the wave generator and the beginning of 
the variable bottom. Typically, wave measurements were made at  40 positions for 
each frequency in order to resolve the wave envelope over a complete surface 
wavelength, and the entire process was repeated for each frequency examined. The 
wave measurements were made at distances no less than approximately half a 
surface wavelength from the start of the region of undulating bottom to ensure that 
all the non-propagating modes had died out. Wave amplitudes were measured 
throughout the region of undulating bottom and the harmonic content of the surface 
wave field was also examined. 

In order to obtain the reflection coefficient for the beach in isolation, wave 
measurements were made on a flat bottom having the same depth as the mean depth 
used for the present experiments. The measurements were made a t  the same 
locations in the wave tank as the present experiments to ensure that the reflected 
waves were damped by the viscosity in the same way. The beach reflection 
coefficients were of the order of R, = 0.14 .2  below about 1.8-2.0 Hz. Above 
1.8-2.0 Hz, beach reflection was negligible. 

In the middle-frequency range, uncertainties in reflection coefficient measurements 
are less than few percent. In  the low-frequency range (< 1.8-2.0 Hz) backscattering 
by the beach introduces uncertainties into values of the reflection coefficient. The 
true value RT of the reflection coefficient is estimated in the experiments to within 
a range of uncertainty around the measured value R given by RT = R f R,. At large 
frequencies, since the wave generator efficiency is poor and the wave viscous 
damping is large, wave amplitudes are very small and difficult to detect. Therefore, 
relative uncertainty on the reflection coefficient can reach 40 % above 4.5 Hz. Above 
4.04.5 Hz, since the wave generator efficiency is poor, taking measurement is very 
difficult and in some cases, measurements were not obtained. This is why some high 
frequencies are not covered by the experimental data in some figures shown in $4. 

Except for the bed types used and some slight modifications to the apparatus, the 
basic apparatus was the same as that used by Belzons et al. (1988) and Rey et al. 
(1992) where further details of the equipment and experimental methods may be 
found. 
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4. Experimental results 
Before the experiments were carried out, it was verified that the measured waves 

were linear gravity waves (see condition (2)). Typical wave steepnesses (Ak) were in 
the range 0.01-0.10, the relative amplitude (AIH,) was a t  most 0.05 and the values 
of the Stokes parameter A/k2H;: were in the range 0.034.8.  It was also confirmed 
experimentally, by checking the predictions of the dispersion equation, that the 
effects of the surface tension were negligible in the frequency range of interest. The 
investigation of the harmonic content of the surface wave field revealed that more 
than 98 % of the wave elevation was at  the fundamental frequency. Thus, the waves 
examined in the experiments were linear monochromatic gravity waves in either 
shallow water or water of intermediate depth. Taken together, these considerations 
justify the use of a numerical model based on the linear potential theory as a basis 
for comparison with the experimental data. 

4.1. Rejection coegicients for the bed S,  with K ,  = la2 
Consider the results for the bed S, with a length L = 48 cm, which corresponds to a 
spatial period number M = 4 for the largest wavelength A,. The plots of R versus f 
presented in figures 1 and 2 show the effect of an increase in the relative amplitude 
of the bottom modulation E =  AH/H,. Only data corresponding to E =  0.25 
( H ,  = 4 cm) and E = 0.40 ( H ,  = 2.5 cm) are shown. Experiments were also performed 
for an intermediate value E = 0.33 ( H ,  = 3 cm) and showed a continuous behavioural 
change between these two extreme values. 

In  the figures, the arrows indicate the location of the frequencies f,, f,, 
corresponding respectively to the wavenumbers I&, and I&, (i.e. to the first-order 
Bragg resonance), as well as the location of the frequencies f,+, f2+, f- and f+ which 
correspond respectively to the wavenumbers K,,  K,, i (K,  -K,)  and i ( K ,  +K,)  (i.e. to 
second-order Bragg resonances). These frequencies were computed using the 
dispersion relation over a flat bed for the water depth of interest, H,. They will be 
hereafter referred as the plane wave frequencies of the Bragg resonances. It should 
be noted that, since K ,  = A&, for bed S,, the second-order bands corresponding to 
k = K ,  and k = $(K,-K,) cannot be distinguished from the first-order bands 
k = I& ,and k = 

For small E ( = 0.25), figure 1 shows two main first-order resonant peaks near the 
plane wave frequenciesf, = 2.25 Hz andf, = 3.55 Hz. The experimental data follow 
quite closely Mei’s (1985) first-order theoretical predictions, particularly in respect to 
the position and width of the two peaks. For large E (figure 2, ~=0.40), the 
experimental peaks are shifted towards lower frequencies compared with the 
prediction of the first-order theory. In  addition, two new small peaks occur, 
corresponding to second-order Bragg reflections near the plane wave frequencies 
f+ = 4.32 Hz and fa+ = 5.07 Hz. These peaks are not predicted by the first-order 
theory. 

As a general trend, peak amplitude and width increase with E .  Since M = 4 for the 
results in figures 1 and 2, only a few oscillations in R appear between the main 
resonant peaks. As E increases, the experimental peak locations are shifted toward 
lower frequencies compared to the peak locations given by the plane wave 
frequencies of the Bragg resonances. In contrast, the peak locations given by the 
first-order theory are in good agreement with the peak locations given by the plane 
wave frequencies of the Bragg resonances. 

Results obtained for the same bed type S, but with a larger length L = 192 cm (i.e. 

respectively (i.e. f- =f, andf, =f,+). 
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FIGUF~E 1. Results for the reflection coefficient of bed S, with L = 48 cm and E = AH/H, = 0.25 
(H, = 4 cm). The dots are the experimental data. The solid curve is the present numerical 
computation taking into account three evanescent modes. The dashed curve is the present 
numerical computation taking into account no evanescent modes. The iirst-order analytical results 
of Mei are shown by a dashed dotted curve. 

FIGURE 2. As for figure 1, but for E = A H / H ,  = 0.40 (H, = 2.5 cm). 

M = 16 for the larger wavelength A1) are shown in figures 3 and 4, for the same values 
of 6. The remarks made above are again applicable as far as the shift toward lower 
frequencies, and the occurrence of the second-order resonant peaks are concerned. 
However, many more oscillations are now present between the main resonant peaks, 
as expected. Moreover, peak amplitude increases and peak width decreases when 
increasing M for fixed E. This is particularly well demonstrated by comparing figures 
1 and 3. 

In all the cases of both M = 4 andM = 16 with bed S,, good agreement is obtained 
between the measurements and the numerical calculations obtained with three 
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Frequency (Hz) 
FIQURE 3. Results for the reflection coefficient of bed S, with L = 192 cm and 

e = AH/H, = 0.25 ( H ,  = 4 om). Symbols aa for figure 1. 

0 1 2 3 4 5 6 
Frequency (Hz) 

F’IQURE 4. As figure 3, but for E = AH/H,  = 0.40 (H,  = 2.6 om). 

evanescent modes. Both peak positions and widths are well predicted. The increase 
of the amplitude of a given peak with E and M is also well described. For large M and 
E (figure a), perfect reflection is predicted by the model. On the other hand, the results 
computed with no evanescent modes (broken lines) are not in such good agreement. 
Prediction of the model without evanescent modes overestimates the higher-order 
harmonic peak amplitude. This is well evidenced on figures 2 and 4. When E is 
increased, peaks computed with three evanescent modes are shifted towards lower 
frequencies compared with peaks predicted without evanescent modes. 
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FIGURE 5. Results for the reflection coefficient of bed S, with L = 48 cm and E = AH/H, = 0.13 

( H ,  = 4 cm). Symbols as for figure 1. 

0.8 -, 

c) 0.6 
c 
0 

.M 

$ 0 
0.4 c 

0 
0 
.- 
Y 

4 
d 0.2 

0 1 2 3 

f, 

1 f8 

4 5 6 

Frequency (Hz) 

FIGURE 6. As figure 5, but for E = AH/H, = 0.20 ( H ,  = 2.5 cm). 

4.2. Reflection coeficients for the beds S ,  and S,  with K ,  = z&, 
Further experiments were performed with the two-frequency beds S, and S,, for 
which the wavelengths A ,  and A,  were chosen not to be a simple multiple of one 
another as for bed S,. The wavelengths were such that the subharmonic resonance 
associated with k = ;(.K,-K,) (corresponding to frequencyf-) could be observed in 
the low-frequency range. Higher-order harmonic resonances will not be addressed 
here since they occur a t  higher frequencies for the specific bottoms used in this 
experiment. Indeed, a t  high frequencies, the bottom has very little influence on wave 
propagation. Results with a bed length L = 48 cm (i.e. M = 8 for the larger 
wavelength A, )  are shown in figures 5 and 6 for bed S, and in figures 7 and 8 for bed 
S,, for the same increasing values of mean water depth as in the experiments of $4.1. 
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FIQURE 7. Results for the reflection coefficient of the bed S, with L = 48 cm and 6 = A H / H ,  = 0.25 
(H,  = 4 cm). The solid curve is the present numerical computations taking into account three 
evanescent modes with a bed subdivision at the maximum slope as in the other figures. The open 
squares are results of the same numerical computation taking into account three evanescent modes 
with a bed subdivision at the trough. Other symbols as for figure 1. 
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FIGURE 8. As for figure 7, but for 6 = U / H ,  = 0.40 (H, = 2.5 cm). 

Again, data corresponding to an intermediate value of relative bed amplitude are not 
presented here since they showed a continuous behavioral change between the two 
extreme values. 

Consider, firstly, the bed S,. For small B (  = 0.13), figure 5 shows the two first-order 
resonant peaks and the subharmonic peaks which are located in the vicinity of the 
corresponding plane wave resonance frequencies fi = 3.55 Hz, fi = 4.41 Hz and 
f- = 2.25 Hz. Clearly, the subharmonic peak is very large, which cannot be predicted 
by Mei’s (1985) first-order analytic theory. In contrast, the first-order peaks near fi 
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andf, follow closely the first-order theory predictions. For large E (figure 6,e  = 0.20), 
the experimental peak amplitudes located near the frequencies fl = 3.35 Hz, 
fa = 4.33 Hz andf- = 1.93 Hz are increased and the experimental peaks are slightly 
shifted towards low frequency compared with the prediction of the first-order theory. 

Consider, secondly, bed S,. For relatively small E ( = 0.25), figure 7 shows the two 
first-order resonant peaks near the corresponding plane wave frequencies 
fi = 3.55 Hz andf, = 4.41 Hz and also the second-order subharmonic peak near the 
corresponding plane wave frequency f- = 2.25 Hz. This second-order peak is again 
very large and is not predicted by the first-order theory. Even for this small e, the 
first-order experimental peaks are shifted towards lower frequencies compared to the 
predictions of the first-order theory and to the peak locations given by the plane 
wave frequencies of the Bragg resonances. For larger e (figure 8, E = 0.40), the effect 
of the shift increases. The experimental peak locations are strongly shifted towards 
low frequencies compared to the peak location given by the plane wave frequencies 
of the Bragg resonances,f, = 3.35 Hz andf, = 4.33 Hz andf- = 1.93 Hz. This shift 
also increases as f decreases. Again, as a general trend, peak amplitude and width 
increase with E .  

In  all of the above cases, good agreement is obtained between the experimental 
and the numerical calculations taking into account three evanescent modes. Both 
peak positions and widths are well predicted. On the other hand, the results 
computed with no evanescent modes (broken lines), are again in poor agreement with 
the experimental data. This is particularly evident in the vicinity of the subharmonic 
peak. The predictions of the model without evanescent modes underestimate the 
subharmonic peak amplitude. As a general rule, the disagreement increases with 
decreasing frequency, particularly in respect to the subharmonic peak amplitude and 
to the peak position. Indeed, the experimental data are shifted towards low 
frequencies compared with the prediction of the model without evanescent modes. 
This shift increases both with increasing relative bed modulation E and with 
decreasing frequency for a given bed. This is clearly shown in figures 7 and 8. 

5. Discussion and concluding remarks 
Measurements of linear gravity waves propagating over doubly sinusoidal beds 

provided experimental evidence of higher-order subharmonic and harmonic resonant 
reflection. Subharmonic resonant reflection was found to be very large, even for small 
relative bed amplitudes. In  contrast, higher-order harmonic resonant reflections were 
revealed successively as the relative bed amplitude was increased. As a general trend, 
as bed relative amplitude increased, peak amplitude and width increased and 
experimental peak location shifted towards lower frequencies compared with peak 
location given by the plane wave Bragg conditions and first-order theory predictions. 
This shift slightly increased with decreasing wave frequency. Moreover, peak 
amplitude increased and peak width decreased for beds of increasing spatial period 
number. 

These new higher-order Bragg effects cannot be predicted by the first-order 
theories for bed relative amplitude. The experimental data were compared with a 
numerical model based on the linear potential theory derived from Takano (1960) 
and Kirby & Dalrymple (1983). Results of a simulation, which takes into account 
evanescent modes, are in fairly good agreement with the experimental data, 
particularly in respect to peak positions and widths. In the middle-frequency range, 
where experimental uncertainties are small, the amplitude of the computed peaks 



Higher-order Brqg reJlection of gravity surface waves 315 

tends to be slightly larger than experimental data. This slight lack of quantitative 
agreement is thought to be due to the viscous dissipation which is not taken into 
account in the model. For low and high frequencies, the numerical computation 
provides predictions within the range of experimental uncertainties which are rather 
large in this case. Peak amplitude behaviour for increasing bed amplitude is in 
agreement with that numerically predicted by Mattioli (1991) by means of the same 
model (see in particular, figure 7 of Mattioli 1991). Furthermore, we found that peak 
amplitude increases and peak width decreases for beds of increasing spatial period 
number, M. Computed peak amplitudes are shown to converge to the limit value of 
1 when M increases (Belzons et al. 1991). This perfect reflection for a large bed was 
also predicted by Mei’s (1985) first-order theory. 

In contrast, results of the simulation without evanescent modes are in poor 
agreement with the experimental data. This is particularly evident in the vicinity of 
the second-order resonant reflections. Predictions with no evanescent mode 
underestimate subharmonic peak amplitude (figures 5-8) and overestimate higher- 
order harmonic peak amplitude (figures 1 4 ) .  In  addition, the experimental peaks are 
shifted towards lower frequencies compared with the prediction of the model without 
evanescent modes. This effect is particularly strong for beds S, and S, where 
subharmonic reflection is observed in the low-frequency range. These results confirm 
the numerical predictions of Mattioli (1991) who investigated the role of evanescent 
mode inclusion in the resonant reflection phenomenon for doubly sinusoidal beds of 
similar component wavenumber ratios (see in particular, figures 3 and 4 of Mattioli 
1991). We also found that the peak shift increases as the wave frequency decreases. 

The present study confirms and extends the numerical results of Mattioli (1991). 
Comparison between experimental and numerical results shows that the evanescent 
modes play an important role since only the numerical computation including 
evanescent modes can predict correctly the higher-order resonant reflection observed 
experimentally. Indeed, the inclusion of the evanescent modes causes the wave to 
depart from the plane wave solution and, similarly, the peak locations to depart from 
their plane wave behaviour. This can be understood by the fact that the propagating 
waves involved in the Bragg phase matching condition have their amplitudes and 
phases continuously renormalized by the evanescent modes. Therefore, the 
evanescent modes fully participate in the phase matching and thus in the interference 
process. Further investigations related to this last point are presented in Belzons 
et al. (1991). 

This work also provides further insight into the importance of subharmonic Bragg 
reflection. Indeed, although it was expected to be a second-order effect in bed relative 
amplitude, subharmonic Bragg reflection was found to be very large compared with 
first-order reflections, even for small relative bed amplitudes. In  contrast, as 
expected, higher-order harmonic resonances were revealed successively as the 
relative bed amplitude waa increased. This original finding can be explained by the 
following considerations. Firstly, the interaction effect between the wave and the 
bottom increases as kHo diminishes. Therefore, resonant interactions increase with 
decreasing wave frequency. Secondly, the bottom regions of large steepness are 
coupled to first order for the subharmonic resonance frequency. Thirdly, the 
parameter describing the weight of the evanescent modes is of the order of 
(dH/dx)2/(kHo)2 (Smith t Sprinks 1975; see also Mei 1983, chap. 3). This parameter 
shows the role of the steepness of the bottom as well as the increasing influence of the 
evanescent modes with decreasing frequency. Therefore, the participation of the 
evanescent modes in the interference process is enhanced for a given bed when 
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frequency increases and for a fixed frequency when relative bottom amplitude 
increcwes. 

Much of this work is based upon the thesis research of V. Rey. Some of the 
preliminary experiments benefited from the stay in our laboratory of L. N’Ganga. 
We would like to thank A. G. Davies and T. O’Hare for helpful comments and C. C. 
Mei for fruitful discussions as well as communications of results prior to publication. 
This work was partially supported by a Convention DRET-Universitb de Provenance 
under contract no. 87/112. 
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